Rotary Cylinder

Rack & Pinion-NRP

- LONG DURABILITY IS **GUARANTEED BY THE** INSTALLATION OF WEAR RING AND USE OF LOW FRICTION PACKING.
- SHOCK ABSORBER CAN BE INSTALLED(LOW NOISE).
- EASY TO ADJUST ANGLE BY STOPPER.
- COMPACT DESIGN.

Symbol

Rotary Cyl.

N: NEW

2 Mounting

3 Axis Standard

R: Rotary Cyl.

P: Rack Pinion

B : Basic type

L : Foot type

S : Single axis

 \mathbf{W} : Double axes

6 Cushion

Blank: None

Blank : None

7 Auto Switch

C : Air cushion

W8V : Reed switch

: Reed switch

W9H : Solid state switch

W9V : Solid state switch

한국원색인쇄사 😊 🔀 📉

CHANGE OF ROD END SHAPE

SB

NF

NR

ASL

SAH

NBU

ACU

SE

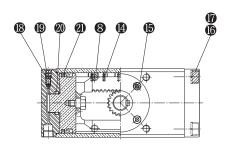
ARM

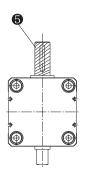
How to order

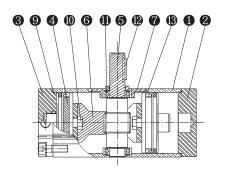
4 Bore Size

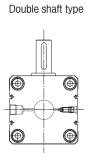
50, 63, 80, 100

011	90°	90°		
Standard	180°	180°		
Sub	100°	100°		
standard	190°	190°		
/ For non indicated angle				

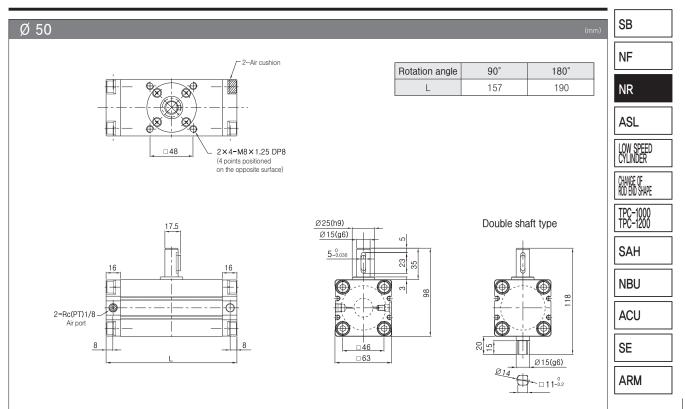

please contact us.

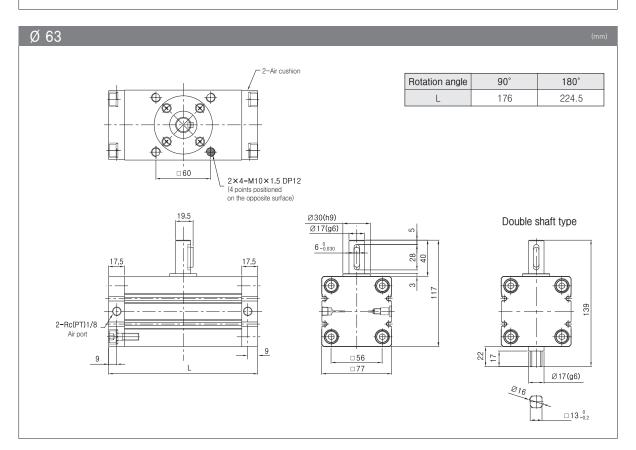

8 Number of Auto Switches Blank : 2 pcs S : 1 pc N : N pcs

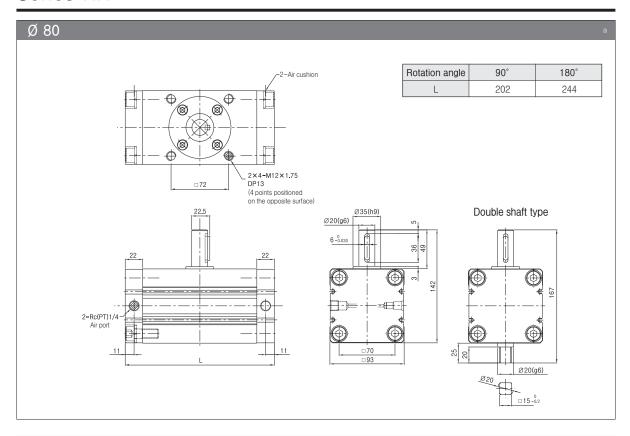

Specifications

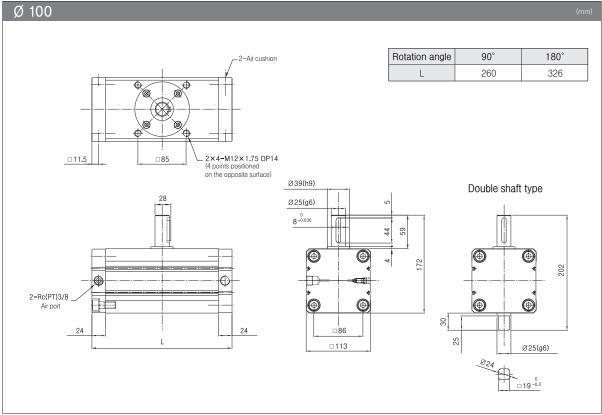

Mod	lels	NRP 50	NRP 63	NRP 80	NRP 100	
Bore Siz	ze(mm)	50	63	80	100	
Rotation Angle	standard		90 +4 0	, 180 +4 0		
(°)	substandard		100 +4 0	, 190 +4 0		
Air Cushion	standard		>	<		
All Custilott	option)		
Theoretic Torque(kgf · cm) (based on 5 kgf/cm²)		98	187	377	785	
Allowed Energy	without air cushion	0.475	1.14	1.52	5.225	
(kgf · cm)	with air cushion	8.8	13.2	17.6	26.4	
Port :	Size	Rc(PT)1/8	Rc(PT)1/8	Rc(PT)1/4	Rc(PT)3/8	
Weight of Main	90°	1.6	2.6	4.5	8.2	
Body(kgf)	180°	1.8	3.1	5.0	9.3	
Maximum Rad	ial Load (kgf)	20	30	40	60	
Maximum Thru	ust Load (kgf)	50	60	90	100	
Rotation Time(sec)	based on 90°	0.2 ~ 2	0.2 ~ 3	0.2 ~ 4	0.2 ~ 5	
Flu	id	Air(Non-lube)				
Pressure(kgf/cm²)	1.5~10.2				
Temperature · °C(°F)		0 ~ 60°C(0~140°F)				
Acti	on	Double operating				
Tolerance of rotation angle		0 ~ +4°				
Auto cwit	ch tyno		W8H,	W8V		
Auto switch type			W9H,	W9V		

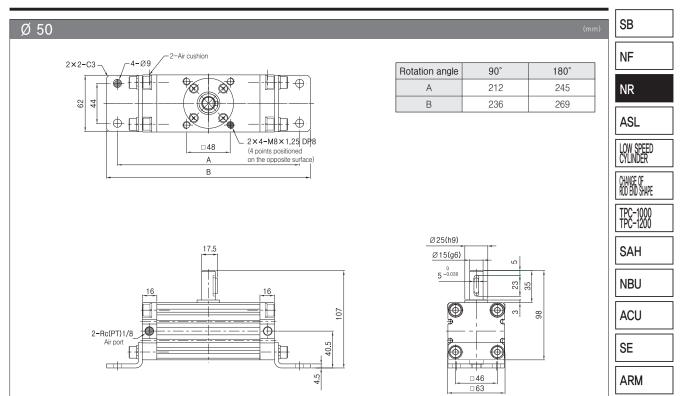
Construction/Parts List

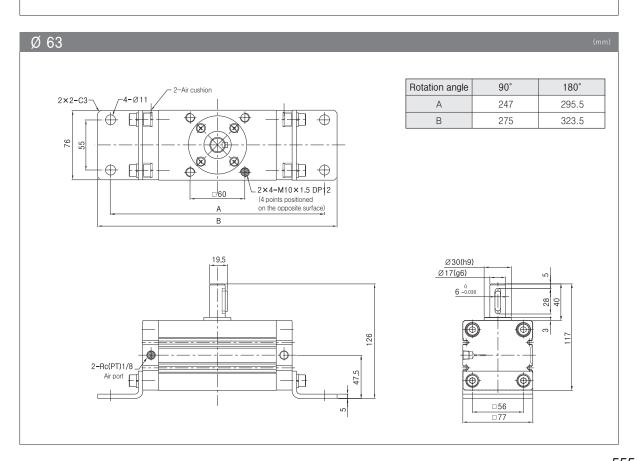


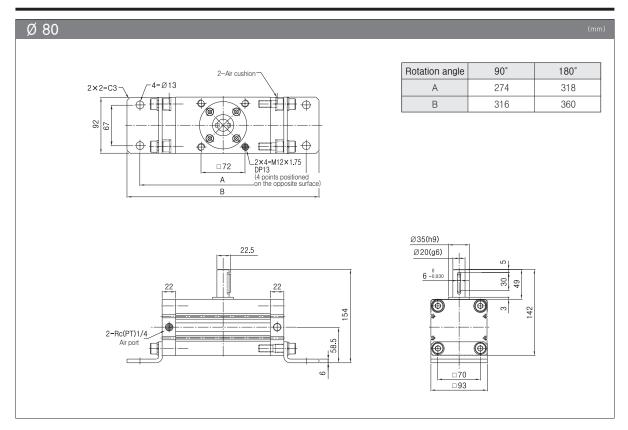


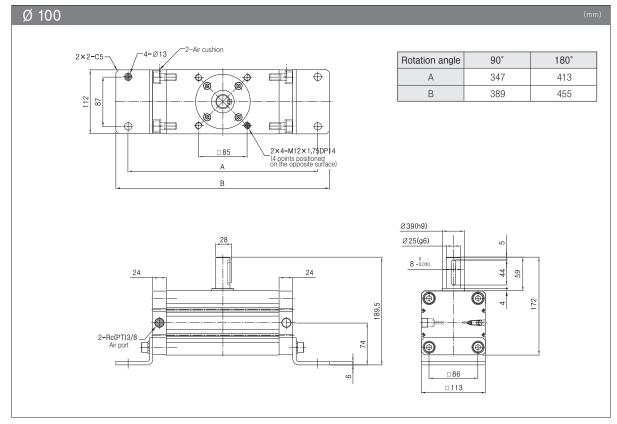





Pa	rts List		
No.	Description	Material	Note
0	Body	Aluminum alloy	
2	Cover(right)	Aluminum alloy	
3	Cover(left)	Aluminum alloy	
4	Piston	Stainless steel	
•	Piston(100°, 190°)	Stainless steel	Option
6	Shaft	Aluminum alloy	
•	Shaft(double)	Aluminum alloy	Option
0	Rack	Carbon steel	
7	Bearing retainer	Aluminum alloy	
8	Slider	Resin	
9	Tube gasket	Rubber	
0	Connecring screw	Carbon steel	
0	Bearing	Bearing steel	
12	Parallel key	Carbon steel	
(3)	Piston packing	Rubber	
4	Spring pin	Steel wire	
6	Plush bolt	Carbon steel	
16	Bolt-hex socket	Steel wire	
7	Spring washer	Steel wire	
13	Cushion valve o-ring	Rubber	
®	Cushion valve	Rolled steel	
20	Cushion packing	Rubber	
a	Magnet	Magnet type	









Rotary Cylinder

Rack & Pinion Compact type-NRC

- RACK AND PINION TYPE
- BACKLASH IS MINIMIZED TO DETERMINE THE POSITION, IN HIGH PRECISION BY USING DOUBLE RACK
- POSSIBLE TO CANTROL ANGLE AS WELL AS CUSHION STROKE
- AUTO SWITCH IS ATTACHABLE FOR **DETECTING OPENING AND CLOSING**

Symbol

W8H

W9H

한국원색인쇄사 😊 🔀 📉

: Solid state auto switch

: Reed switch

: Reed switch

6 Number of Auto Switches

Blank :2 pcs S :1 pc

N : N pcs

W9V : Solid state auto switch

CHANGE OF ROD END SHAPE

SB

NF

NR

ASL

SAH

NBU

ACU

SE

ARM

How to order

Rotary cyl.

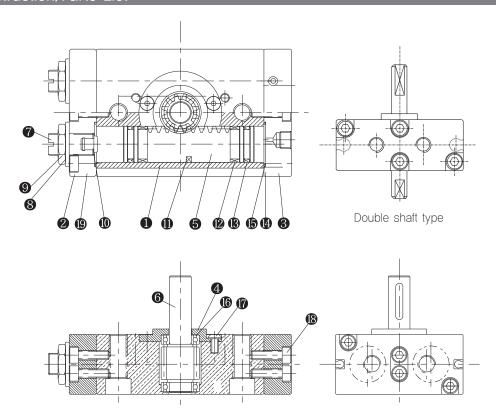
2 Axis

N : New R : Rotary cyl.

C : Compact

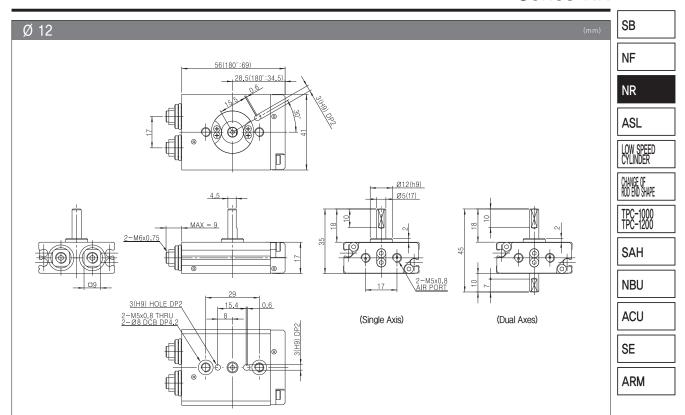
Standard S : Single axis W : Double axes

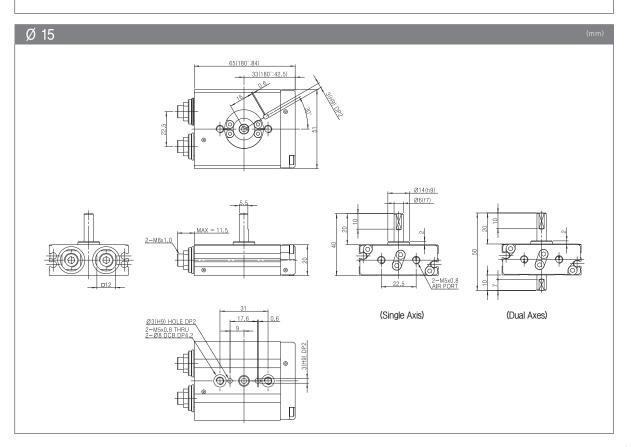
180 : 180° 5 Auto Switch

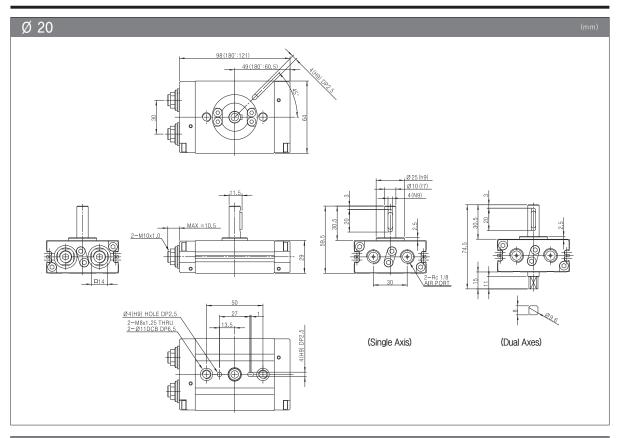

Blank: None

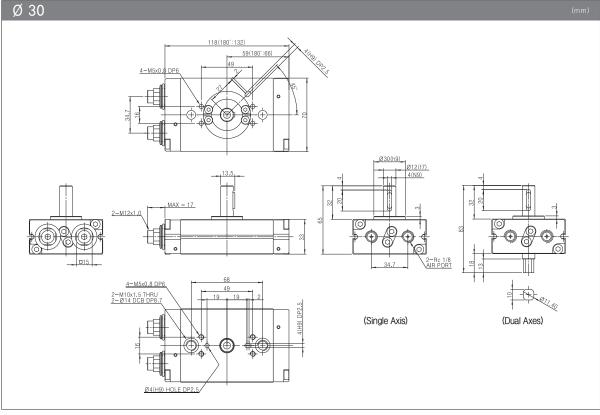
4 Rotation Angle **90**: 90°

Specifications


	Models		NRC 15	NRC 20	NRC 30	
Bor	Bore Size(mm)		13	18	20	
Rotation An	gle and Regulating		90	±5		
F	ange(°)		180)±5		
Cushion	adjusting bolt attached		Ureth	nane		
Custilott	shock absorber attached		Shock a	absorber		
Theortic '	Torque (kgf·cm)	0.50	7.00	00.05	00.00	
(based o	on P=5 Kgf/cm²)	3,53	7.96	20.35	28,26	
Allowed Energy	without cushion	0.07	0.12	0.24	0.46	
(kgf · cm)	shock absorber attached	0.7	1.2	2.5	3.8	
Air Su	pply port size	M5	M5	PT 1/8	PT 1/8	
Maximum	Radial Load (kgf)	1.5	2	5	8	
Maximum	thrust Load (kgf)	1.6	2	5	10	
Rotation Time	adjusting bolt attached	$0.2 \sim 0.7$	0.2 ~ 0.7	0.2 ~ 1	0.2 ~ 1	
(sec) based on 9	0° shock absorber attached	$0.2 \sim 0.5$	0.2 ~ 0.5	0.2 ~ 0.7	0.2 ~ 0.7	
	Fluid	air				
F	Pressure	$1.5 \sim 7.1 \text{kgf/cm}^2 (21 \sim 101 \text{psi})$				
L	ubrication	unnecessary				
Temp	erature · °C(°F)	0 ~ 60°C(0~140°F)				
	Action	Double operating				
Aude	a quitab tuna		W8H,	W9H		
Auto	switch type		W8V,	W9V		


Construction/Parts List


Pai	rte	Lis'	и
ıa	ıtə	டால	ч


No.	Description	Material	Note
0	Body-rotary	Aluminum alloy	
2	Cover-end	Aluminum alloy	
8	Cover-port	Aluminum alloy	
4	Cover-shaft	Aluminum alloy	
6	Piston-rack	Stainless steel	
6	Shaft-rotary	Carbon steel	
7	Stopper-adjust	Stainless steel	
8	Seal washer	NBR+carbon steel	
9	Nut-seal	Carbon steel	
0	Cushion	Urethane	
•	Magnet	Magnet type	
2	Wear ring	Resin	
(3)	Piston packing	NBR	
@	O-ring	NBR	
6	O-ring	NBR	
6	Bearing-ball	Bearing steel	
•	Hex socket bolt	Carbon steel	
®	Bolt-hex socket	Carbon steel	
®	Shock absorber	-	Option

한국원색인쇄사 C 🚺 🗡 🔣

Rotary Cylinder

Rack & Pinion Table type-NRT

• REVOLVING ROTARY CYLINDER, DOUBLE PISTON TYPE(RACK AND PINION). • SHOCK ABSORBER CAN BE INSTALLED.

- WIRING IS HANDLED IN SINGLE METHOD BY MIDDLE EMPTY AXIS.
- IT IS POSSIBLE TO REGULATE ANGLE AS WELL AS CUSHION STROKE.
- AN AUTO SWITCH CAN BE ATTACHED TO DETECT OPENING AND CLOSING.
- SMOOTH OPERATION AND HIGH POWER.
- HIGH PRECISION.
- A VARIETY OF MOUNTING OPTIONS.

Symbol

NBU

SAH

SB

NF

NR

ASL

CHANGE OF ROD END SHAPE

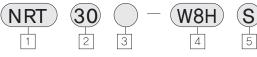
ACU

SE

ARM

II ROTARY CYL.

R: Rotary Cyl.


30, 50, 70, 100

N:NEW

T: Table

2 Size

How to order

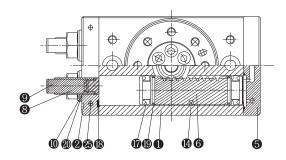
3 Shock Absorber

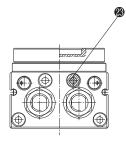
Blank : Adjusting bolt S : Shock Absorber

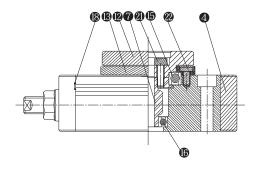
4 Auto Switch Blank : None W8H : Reed switch 5 Number of Auto Switches

: Reed switch : Solid state switch

: Solid state switch

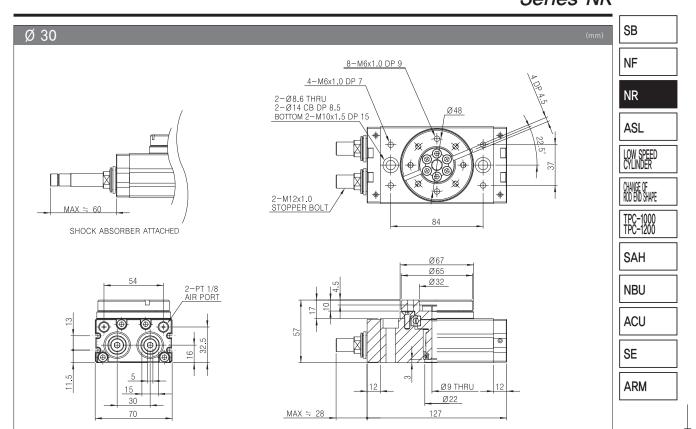

한국원색인쇄사 😊 🔀 📉

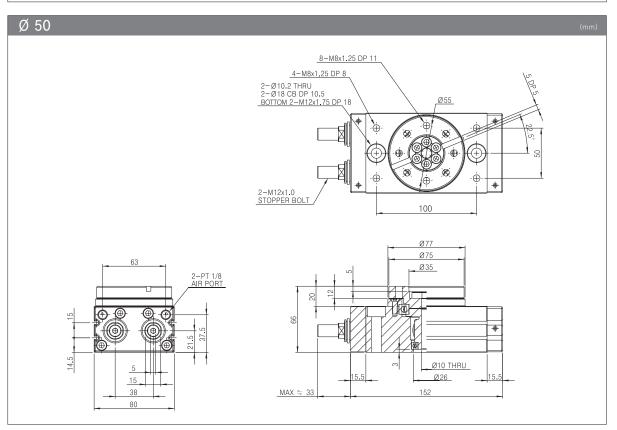

Blank : 2 pcs : 1 pc Ν : N pcs


Specifications

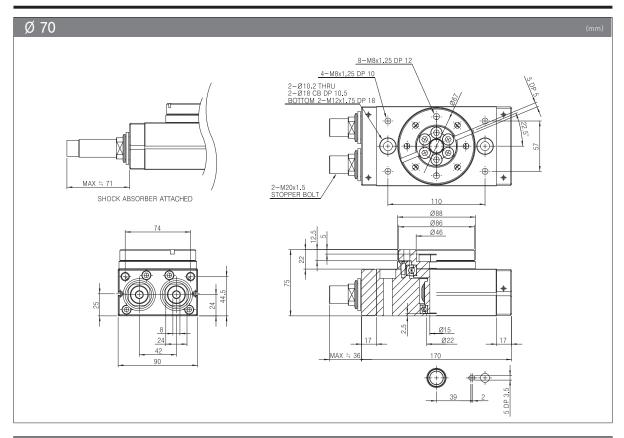
	Models	NRT 30	NRT 50	NRT 70	NRT 100
E	Bore Size (mm)	2 × Ø22	2 × Ø25	2 × Ø28	2 × Ø32
Ro	tation Angle (°)		0 ~	190°	
0 1:	adjusting bolt attached		Ureth	nane	
Cushion	shock absorber attached		Shock a	absorber	
Theore	tic Torque (kgf · cm)	31.3	51.5	75.4	102.5
Allowed Ene	rgy without cushion	0.49	0.78	2,33	3.10
(kgf · cm)	shock absorber attached	1.041	2,639	9.68	14.08
Air	Supply port size		PT	1/8	
	Weight (g)	1,310	2,030	3,110	4,300
Maximum Radial Load (kgf)		20	32	34	40
Maximu	um Thrust Load (kgf)	37	46	49	72
Rotation Time	adjusting bolt attached	$0.2\sim1.0$	0.2 ~ 1.0	$0.2\sim1.5$	0.2 ~ 2.0
(sec) based or	n 90°C shock absorber attached	$0.2\sim0.7$	0.2 ~ 0.7	0.2 ~ 1.0	0.2 ~ 1.0
	Fluid	Air			
	Pressure	0.15~1.0MPa(21~145psi)			
Ter	nperature · °C(°F)	0 ~ 60°C(0~140°F)			
	Action	Double operating			
Precision	Initial Value	±0.05			
(mm)	After operation in 1 million times	±0.07			
٨	uto quitab tupo		W8H	,W9V	_
A	uto switch type	-	W8H,	W9V	

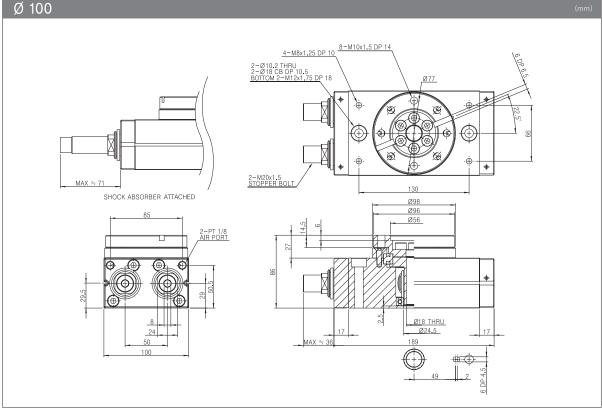
Structure/Parts List





Parts list


No.	Description	Material	Note	
0	Body	Aluminum alloy		
2	Port cover	Aluminum alloy		
4	Gasket	NBR		
6	End cover	Aluminum alloy		
6	Piston	Stainless steel		
0	Pinion	Carbon steel		
8	Flange nut	Carbon steel		
9	Adjust bolt	Carbon steel		
0	Cushion pad	Urethane		
@	Table	Aluminum alloy		
®	Bearing retainer	Aluminum alloy		
@	Magnet	Magnet type		
6	Ball bearing	Bearing steel		
®	Ball bearing	Bearing steel		
0	Piston packing	NBR		
®	Port o-ring	NBR		
®	Wearing	Resin		
②	Seal washer	NBRr+carbon steel		
a	Hex socket bolt	Carbon steel		
2	Hex socket bolt	Carbon steel		
23	Hex socket bolt	Carbon steel		
②	Steel ball	Carbon steel		
20	Shock absorber	Stainless steel	Option	


한국원색인쇄사 😊 M 🗡 K

한국원색인쇄사 C 🚺 🗡 🔣

• Common cautions for rotary cylinder

Please make sure to read this prior to selecting and using our products and for detailed cautions of each series, see the details of the respective model.

Cautions for design

Warning

- (1) It is needed to fasten firmly so as to prevent the fixing part or joint of rotary cylinder from being loose. Especially, it is preferred that rotary cylinder should be fastened by the surest way in place
- (2) By attaching protective cover, it is possible to prevent any possible injury to the operation.
- (3) It may be necessary to provide decelerating circuit or shock
- (4) Rotary cylinder may be subject to the risk of malfunction if power changes due to distortion of sliding part of machine
- (5) At the time when you design circuit, it is recommended to consider a prepare restart procedure for after an emergency stop.

Cautions for design

Danger

The use of product for the following purpose should be avoided.

- 1. For the use of medical use equipment designed to treat human body.
- 2. For the use of mechanical device or equipment designed to transport or move persons.
- 3. For the use of mechanical device that needs the maximum stability.

Warning

(1) Confirm the specification.

Be sure that the products in this catalog are designed to be used for industrial compressed air system only. When it is used for allowed energy of load, pressure or temperature beyond the range of specification, it may cause damage or malfunction.

(2) Vibration and shock.

The use of rotary cylinder should be avoided to absorb the vibration and shock of mechanical device.

(3) Concerning intermediary stop.

If at the middle of a direction control valve (3-position closed center type), the rotary cylinder piston stops, it cannot be precisely stopped at exact position like oil pressure because of compressed air. Furthermore, since it is impossible to guarantee prevention of air leakage using valve and rotary cylinder, the stopping position may not be maintained for long time, resulting in damage to human body or equipment.

한국원색인쇄사 😊 M 🗡 🔣

(4) In event that the kinetic energy on the product exceeds tolerance, be sure to install buffer.

Over energy may break product, resulting in damage to human body, instrument or equipment.

Caution

(1) Confirm all specification.

Otherwise, durability may decrease and abnormal wearing or damaging of shaft/internal parts may occur.

- (2) Over load external torque exceeding the specified power to the product should be avoided.
- (3) Be sure to always increase the speed gradually by attaching speed controller when the rotary cylinder is running.
- (4) The use of the product in the low speed area beyond the speed controlling range indicated in the product should be avoided.

Stick slip or stopping of operation may occur due to using low speeds.

(5) Sufficient tolerance is needed in torque

Be sure to select a model so that the required torque is less than 70% of theoretic torque (less than 50% in the case of variable load). If mass of load is large, and operating speed is fast, the inertia load gets too large exceeding the allowed energy of rotary cylinder, so that the product may be broken resulting in fatal injury to the operation or damage to instruments or equipment. In this case, it is preferred to install shock absorber so as to prevent the inertia power from being directly applied to rotary cylinder.

(6) The use of the product using oil pressure (except NRP for low oil pressure) should be avoided.

The product can be seriously damaged if it is used with the oil pressure.

Cautions for selection

Danger

(1) Be sure to always check whether it is fixed in safety when attaching the product.

Dropping the product or irregular operation may result in injury.

565

www.TPCpage.com www.TPCpneumatics.com

SB

NF

NR

ASL

NBU

ACU

SE

ARM

(2) Water must be kept away from the product.

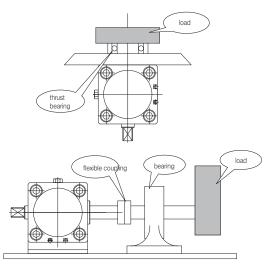
Sprinkling water to the product, washing it with water or using it in the water should be avoided, otherwise it may cause malfunction, resulting in injury, electric shock, fire, etc.

(3) Touching it should be avoided while the product is running.

Warning

- (1) Space for maintenance and repair should be provided.
- (2) Careful handling is needed with respect to cords such as lead wire of auto switch so as to prevent any possible damage.
- (3) Putting auto switch in the external magnetic field is avoided while rotary cylinder is running.
- (4) Installation of safety valve

So as to prevent the pressure from exceeding regular pressure, be sure to install safety valve when it is increasing because of external power applied to rotary cylinder. Over pressure may break the product.


- (5) Modifying the product should be avoided.
- (6) Fastening screw and observance of fastening torque are needed.

Fasten screw to the recommended torque while installing.

(7) Be sure to check that the revolving direction of rotary cylinder coincides with that of the load.

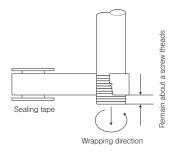
If the center of revolution does not coincide or moment weight is applied to the point of shaft, it is needed to put flexible coupling so that only the revolving power may be transmitted.

So as to achieve a running condition, be sure to let the load apply directly to shaft as described in the following diagram.

Cautions

(1) Applying load exceeding twisting or bending strength to the rotary cylinder shaft should be avoided.

Cautions for piping


Cautions

(1) Action prior to piping.

Make sure to clean piping in order to eliminate the chip, oil or dust in a pipe.

(2) Method of using seal pipe

In event that connecting piping or fitting is performed, it is needed to make sure to prevent the chip or sealing material of piping screw from entering into the inside of piping. Especially, wind it, leaving 1.5-2 threads of pipe untapped when using seal tape.

Cautions for adjusting the cushion

Cautions

(1) It is needed to adjust cushion valve again.

At the time of delivery, though cushion is adjusted, readjusting cushion valve installed on the cover based on the load and running speed used is needed. In the event that cushion valve is turned clockwise, the orifice hole becomes smaller and cushion becomes stronger. After adjusting, it is needed to fasten lock nut (if any) firmly.

(2) Using cushion valve should be avoided while it is completed closed.

Cautions for lubrication

Cautions

(1) No use of Lubrication

Be sure to use this product without lubrication. If needed, it may be used with lubrication; in this case stick slip will result. So as to operate all in air hydro type, it is needed to lubricate turbine oil first class(without addition) ISO VG 32.

When other operating oil beyond designated model is used, failure results.

Using machine oil and spindle oil are avoided.

Cautions for air source

Cautions

(1) It is needed to attach air filter

The use of the product should be avoided in the place in which there are provided dust, salt, iron, powder, humidity. organic solvent, operating oil of phosphoric acid ester type sulfurous acid gas, chlorine gas, and the acids are contained. With the above conditions, operation delay, sudden deterioration of performance and reduction of durability may

(2) The use of the product should be avoided in the place subjected to erosion.

For the equality of materials of rotary cylinder, it is needed to check each structure diagram.

(3) The use of the auto switch should be avoided in the strong magnetic field.

The use of the auto switch should be avoided in the place where there are provided high current or strong magnetism. Otherwise, it may cause malfunction. In particular, the use of the object which may be magnetized to the arranged bracket should be avoided.

Danger

(1) Hazardous substances such as flammables must be avoided.

Warning

- (1) Do not use the product in the place where dust, salt. iron powder, humidity, organic solvent, operating oil of phosphoric acid ester type sulfurous acid gas, chlorine gas and the acids are contained. This condition may cause suspension of operation, sudden deterioration of performance and reduction of durability.
- (2) Do not use the product in the place which is subject to erosion.

For the quality of materials of rotary cylinder, refer to each structure diagram.

(3) Auto switch must not be used in the strong magnetic field.

Do not use auto switch in the place with high current or strong magnetism, otherwise malfunction may occur. Especially, don't use object that can be magnetized to the installed bracket.

Cautions

(1) The use of the auto switch should be avoided together with

this product.

Otherwise, malfunction or undesired operation could result. It is needed to attach air filter to an upper stream provided near valve. It is preferred to set the filtering rate below 5um.

(2) It is needed to install following cooler, air dryer, drain catch etc. for preparation

Malfunction of valve or other air pressure equipment may be damaged due to compressed air with much drain.

(3) It is preferred to set the temperature of fluid and environment within the range of specification.

The circuit moisture could be frozen below 5C, resulting in damage and malfunction in packing. So, it is needed to prepare freezing phenomenon.

SB

NF

ASL

Cautions for environment for use

- (1) The use of the product should be avoided in the place in which there are provided dust, salt, iron, powder, humidity, organic solvent, operating oil of phosphoric acid ester type sulfurous acid gas, chlorine gas, and the acids are contained. With the above conditions, operation delay, sudden deterioration of performance and reduction of durability may occur.
- (2) The over force should be applied to the auto switch or rotary cylinder.

NBU

SE

ARM

Cautions for repair

Danger

Person who uses pace maker should be kept away from the product within 1m.

Warning

The repair should be performed in the sequence of the manual. Otherwise, instrument or device may have malfunction or may be damaged.

Cautions

Inspection available on demand.

Even with high durability, air pressure apparatus could have deterioration of function. So as to prevent accident, it is needed to check that the needed function of system is normal with daily check.

How to select models

Caution: Load must not exceed the allowed limit...

In the case of using rotary cylinder, most factors are studied in the context of inertia load, Erroneous selection for shape and weight of this inertia load, the internal parts may be broken by inertia power of load though the load required torque of rotary cylinder is not so large. For this reason, it is necessary to select right model.

1. Use Condition

Enumerate the use conditions in consideration of attaching direction and work shape.

- revolving angle : θ (rad) table 1
- rotation time : t (sec) table 1 • applied pressure : P (MPa)
- shape and weight of inertia load figure 1
- · attaching direction: horizontal or vertical 1MPa ≒ 10.2kgf/cm²

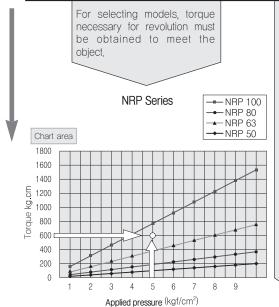
2. Calculating the required rotation time

For selecting models, it is desirable to keep the speed in a controllable range.

Given the use conditions, the rotation time of rotary cylinder is obtained by the following expression. table 1

 $t \ge \sqrt{(2 \times I \times \theta^2/E)}$

E: allowed kinetic energy (J)


 $I: \text{inertia moment } (kgf \cdot m^2)$

 θ : revolving angle (rad) $90^{\circ} \rightarrow 1.57 \text{ rad}$

 $180^{\circ} \rightarrow 3.14 \text{ rad}$

t:rotation time (s)

Selecting the quantity of torque (selecting model)

Item	Horizontal Rotation	Vertical Rotation	Remark
static torque calculation(Tg)	_	$T_S = 2m \times L$	m: weight(Kgf) L: distance between revolving axis and load center(m)
$\begin{array}{c} \text{accelerating torque} \\ \text{calculation}(T_A) \end{array}$	$T_A = I \times \omega_A \times K$		I: inertia moment(Kgf \cdot m²) $\omega_{\rm A}$: each acceleration
required torque(T)	T_{A}	$T_A + T_S$	calculation(rad/s²)
rotary cylinder theoretic torque	Т	graph 1	$\omega_{\rm A}$: $(2\theta/{\rm t}^2)$ K : safety coefficient, over 5

** Effective torque: to be calculated within 70 % of T theoretic torque in consideration of safety rate.

 $1J = 0.10197 \text{kgf} \cdot \text{m} = 10.2 \text{kgf} \cdot \text{cm}$ $1 \text{kgf} \cdot \text{m} = 9.80665 \text{J}$

1N = 0.10197 kgf

 $1N \cdot m = 0.10197 \text{kgf} \cdot m = 10.2 \text{kgf} \cdot \text{cm}$

Referring to the above graph of theoretic torque, if torque of 600kgf.cm is necessary with applied pressure of 5kgf/cm², the supplying pressure is extended to horizontal axis and torque, to vertical axis respectively to get the intersection. Inner diameter (NRP 100) larger than this intersection is to be selected.

SB

NF

NR

ASL

SAH

NBU

ACU

SE

ARM

4. Calculating the load capacity

Referring to the table of shape, get the inertia moment I.

* In the case of rectangle

 $I = m \times (a^2 + b^2)/12$

I: inertia moment (kgf m2)

m: weight (kgf)

a:horizontal (m)

b:vertical(m)

calculation formula of inertia moment:

figure 1

5. Calculating kinetic energy and checking allowed energy

Get the kinetic energy E(J) of loaded object. Get allowed energy

Check to prevent the kinetic energy E(J) of loaded object from exceeding the allowed energy

* In the case of rectangle

 $E = 1/2 \times I \times \omega^2$, $\omega = (2\theta / t)$

E: kinetic energy (J)

I: inertia moment (kgf·m²)

 ω : velocity (rad/s)

 θ : revolving angle (rad)

 $90^{\circ} = 1.57 \text{ rad}$ 180° = 3.14 rad

t: rotation time (s)

allowed energy Emax: table 1

kinetic energy(E) \leq allowed energy(Ea)

* In the case of attaching shock absorber

한국원색인쇄사 😊 🖊 📉

weight m₁ m_1 : (kgf) $I : (kgf \cdot m^2)$ $m_1 = I / R2$

R: distance between the center line of revolution to the center of vertical

hem shock(m) figure 4

weight m_2

 $m_2 = (2 \times T \times L) / (R^3 \times \omega^2)$

 $\omega = (2\theta / t)$ m2: weight (kgf)

T: effective torque($N \cdot m$)

L: stroke of shock absorber(m)

figure 4

ω: angular velocity (rad/s) $m = m_1 + m_2$ calculating the colliding velocity V: velocity(m/s)

kinetic energy(E)≤allowed energy(Ea)

calculating kinetic energy $E = 1/2 \times m \times V^2$

6. Load Rate

6-1 load rate of thrust load

Get loadable mass Wr(kg). Get load rate $\alpha 1$ of load mass.

6-2 load rate of radial load

Get loadable mass Wr(kg). Get load rate $\alpha 2$ of load mass.

6-3 load rate of bending moment

Get moment M(N.m). Get allowed moment $M_{MAX}(N,m)$. Get load rate α 3 of static moment.

maximum loadable weight Wmax:

figure 2

 $\alpha_1 = W / W_{T MAX}$

maximum loadable weight Wmax:

figure 2

 $\alpha_2 = W / W_{R MAX}$

maximum loadable weight Wmax:

 $\bar{\alpha}_3 = M / M_{MAX}$ (for NRT series only)

7. The whole sum of total load rate

If the whole sum of load rate does not exceed 1.

Usable depending on $\Sigma \alpha_n = \alpha_1 + \alpha$ $2^{+}\alpha_{3} \le 1$

Table 1 classifying system of rotary cylinder series

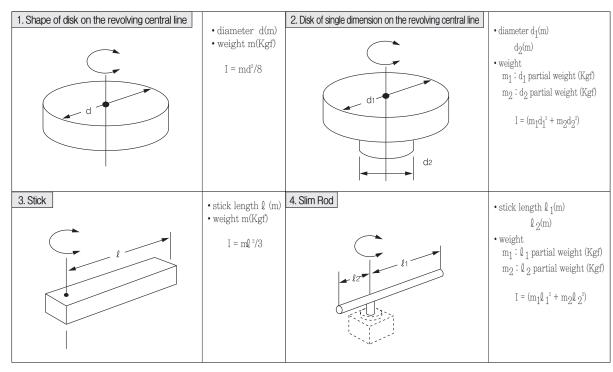
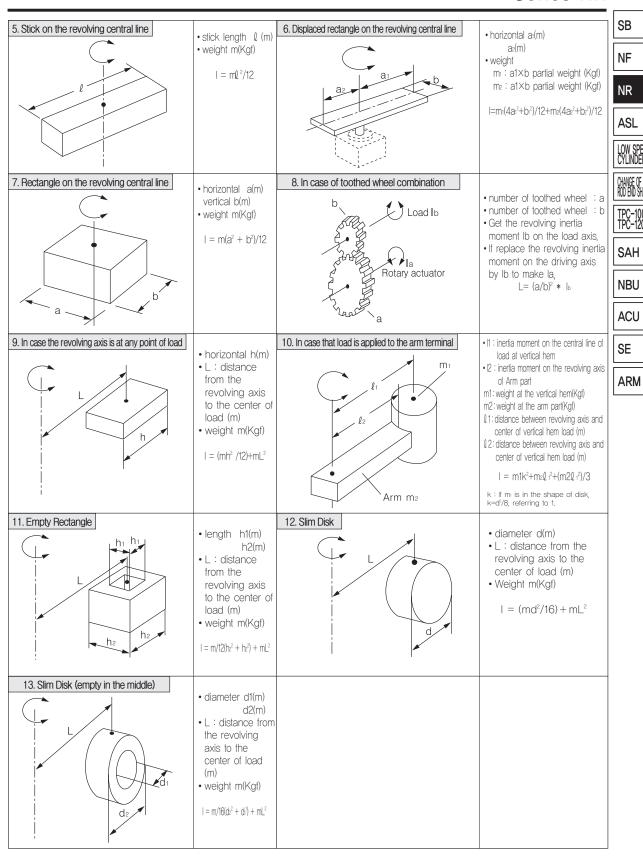
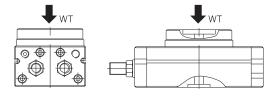

T	ype	Model	Cylinder diameter (mm)	Revolving angle	Allowed e		Theoretic energy (Kgf.cm) (based on P=5Kgf/or²)	Rotation based on 9		Maximum thrust load(Kgf)	Maximum radial load(Kgf)
		NRP50	50	90	without air cushion	0.475	103	0.2 ~	2	50	20
	Rack			180	with air cushion	8.8					
	k &	NRP63	63	90	without air cushion	1,14	187	0.2 ~	3	60	30
				180	with air cushion	13.2					
	Pinion type	NRP80	80	90	without air cushion	1,52	377	0.2 ~	4	90	40
	jn t			180	with air cushion	17.6					
	ype	NRP100	100	90	without air cushion	5,225	765	02~	5	100	60
				180	with air cushion	26.4					
	Rack	NRC12	10	90	without cushion	0.07	3.1	adjusting bolt attached	0.2~0.7	1.6	1.5
Σ		TWITOIL	10	180	shock absorber attached	0.7	0.1	shock absorber attached	0.2~0.5	1.0	1,0
Rotary Cylinder	& F	NRC15	13	90	without cushion	0.12	8.0	adjusting bolt attached	0.2~0.7	2	2
.y (Pinion type	1411010	10	180	shock absorber attached	1.2	0.0	shock absorber attached	0.2~0.5		
Jyli		NRC20	18	90	without cushion	0.24	19.1	adjusting bolt attached	0.2~1.0	- 5	5
nde	l G	ININGZO	10	180	shock absorber attached	2.5	19.1	shock absorber attached	0.2~0.7		
F.	Compact	NRC30	20	90	without cushion	0.46	28.3	adjusting bolt attached	0.2~1.0	10	8
	5	INACOU	20	180	shock absorber attached	3.8	20.3	shock absorber attached	0.2~0.7	10	ğ
		NIDTOO	2,4,00	100	adjusting bolt attached	0.49	21.2	adjusting bolt attached	0.2~1.0	37	20
		NRT30	2x Ø 22	190	shock absorber attached	1.041	31,3	shock absorber attached	0.2~0.7	3/	20
		NIDTEO	000	100	adjusting bolt attached	0.78	F1.F	adjusting bolt attached	0.2~1.0	40	200
	Table	NRT50	2x Ø 25	190	shock absorber attached	2,639	51.5	shock absorber attached	0.2~0.7	46	32
	e ty	NDT70	0000	100	adjusting bolt attached	2,33	1	adjusting bolt attached	0.2~1.5	40	0.4
	type	NRT70	2x Ø 28	190	shock absorber attached	9,68	75.4	shock absorber attached	0.2~1.0	49	34
		NIDTAGO	0 000	400	adjusting bolt attached	3,10	400 5	adjusting bolt attached	0,2~2,0	70	40
		NRT100	2x Ø 32	190	shock absorber attached	14,08	102.5	shock absorber attached	0,2~1,0	- 72	40

Figure 1 Formula to calculate inertia movement

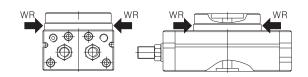

Classification of Movement (inertia resistance)

Formula of inertia movement can be described by the following expression.

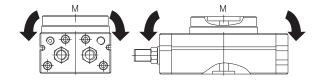
Depending on the shape of inertia movement object, apply the expressions as described in the following figures.

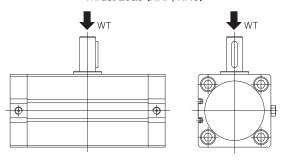

한국원색인쇄사 C M Y K

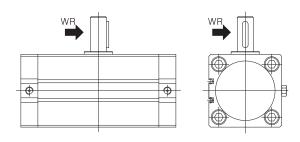
Series NR


Figure 2 Allowed Axis Load

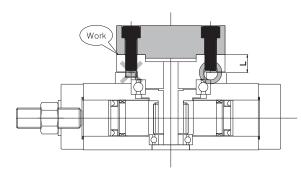
Model	Series	Туре	Thrust Load (Kgf)	Radial Load (Kgf)	Bending Movement N.m(Kgf.cm)
		NRC12	1.6	1.5	_
	NRC Series	NRC15	2	2	_
IJ	(double rack)	NRC20	5	5	_
Rack		NRC30	10	8	_
		NRP50	50	20	_
and Type	NRP Series	NRP63	60	30	_
d F	(single rack)	NRP80	90	40	_
Pinion		NRP100	100	60	_
i or		NRT30	37	20	5.3 (54)
7	NRT Series	NRT50	46	32	9.7 (99)
	(double rack)	NRT70	49	34	12.0 (122)
		NRT100	72	40	18.0 (184)


Thrust Load (NRT)


Radial Load (NRT)

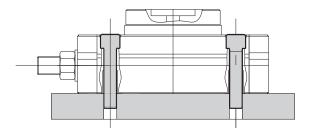

Bending Movement Load (NRT)

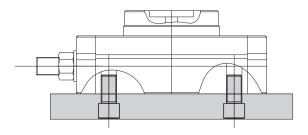
Thrust Load (NRP, NRC)


Radial Load (NRP, NRC)

SB Figure 3 Operation Principle Series Operating Principle Explanation NF NR 1. This equipment is composed of two pistons which move RACK PISTON B ПΠ inside the cylinder, contacting the cylinder and **ASL** Rack & Pinion Type rack/shaft which is inserted into the piston. COVER NRP 2. If air is supplied through A port, piston A is pressed and torque generates at shaft through rack pinion. 3. Air in the draining chamber is drained through B port CHANGE OF ROD END SHAPE and revolves clockwise. 4. If piston B contacts cover and stops, shaft also stops. SHAFT 5. If air is supplied through B port, it also revolves PISTON A counterclockwise. SAH Rack & Pinion Compact Type **NBU** 1. This equipment is composed of rack which moves inside **ACU** PISTON A PINION NRC two parallel cylinders, contacting them and 2 pistons and pinion in one body. SE 2. If air is supplied through A port, the right side of piston A is pressed and simultaneously the left side of piston B is also ARM pressed through the air passage of main body. Then, torque in the quantity of 2 pistons generates at pinion. 3. Air in the draining chamber is drained through B port and revolves counterclockwise. Table Type NRT 4. If piston B contacts adjusting bolt and stops, pinion also PISTON B 5. If air is supplied through B port, it also revolves clockwise.

How to mount rotary cylinder


How to mount NRT series


Model	Bolt	Maximum fastening torque M(Kgf*cm)	
NRT30	M6 × 1	7.4 (73)	10
NRT50	M8 × 1.25	17.3 (170)	12
NRT70	M8 × 1.25	17.3 (170)	12.5
NRT100	M10 × 1.5	35.7 (350)	14.5

There are 2 attaching methods for rotary cylinder NRT series as described in the following figures. The tightening torque must comply with the following table.

$\ensuremath{\, \times \,}$ fastening method through hole

* fastening method through TAP part (female screw)

Model	Fastening method	Bolt	Maximum fastening torque N*m (Kgf*cm)			
NRT30	through hole	M8 × 1.25	17.3 (170)			
	female screw	M10 × 1.5	35.7 (350)			
NRT50	through hole	M10 × 1.5	35.7 (350)			
	female screw	M12 × 1.75	61.2 (600)			
NRT70	through hole	M10 × 1.5	35.7 (350)			
	female screw	M12 × 1.75	61.2 (600)			
NRT100	through hole	M10 × 1.5	35.7 (350)			
	female screw	M12 × 1.75	61.2 (600)			

SB

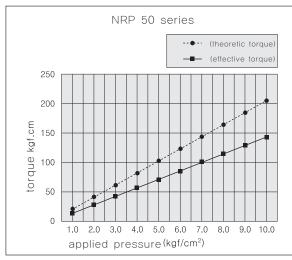
NF

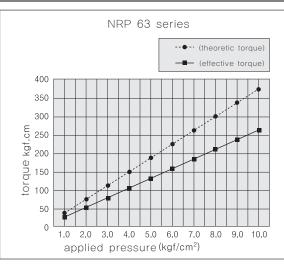
NR

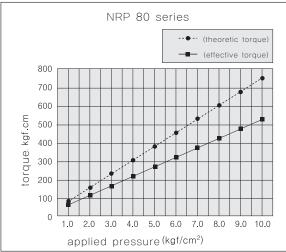
ASL

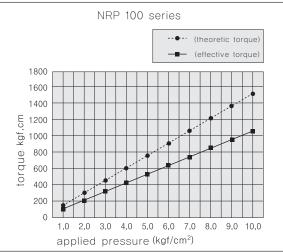
SAH

NBU

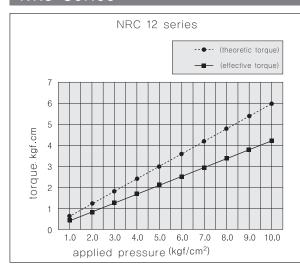

ACU

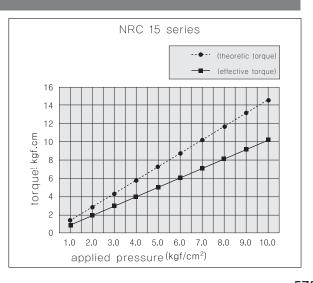

SE


ARM

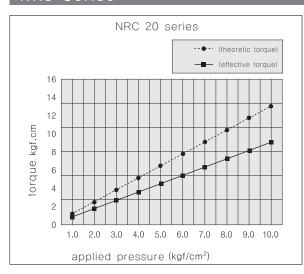

한국원색인쇄사 😊 🔀 🗡 🔣

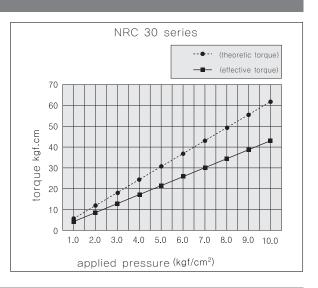
NRP Series



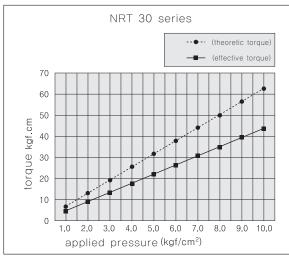


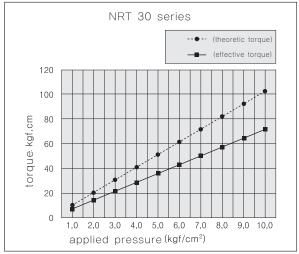
NRC Series

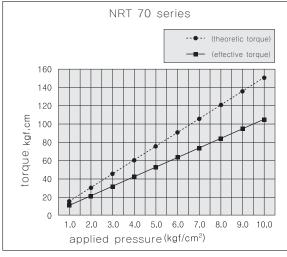


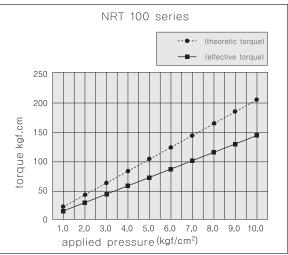


575

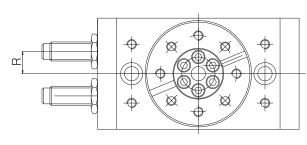

www.TPCpage.com www.TPCpneumatics.com


NRC Series





NRT Series



한국원색인쇄사 😊 🖊 📉

Figure 4

1. Shock absorber stroke and distance

R: distance from the revolving central line to the shock center at vertical hem

Туре		Model	R (m)	Shock absorber stroke(m)	Shock absorber spec		
ack & pinon compact type table type Rotary Cylinder	g ypei	NRC12	0.01	0.005	M8 × 0.75		
	pinion	NRC15	0.014	0.005	M8 × 0.75		
	compa	NRC20	0.016	0.006	M10 × 1.0		
	d type	NRC30	0.0195	0.006	M12 × 1.0		
	6	NRT30	0.014	0.006	M12 × 1.0		
	NRT50	0.019	0.01	M14 × 1.5			
	ţ	NRT70	0.021	0.015	M20 × 1.5		
	NRT100	0.025	0.015	M20 × 1.5			

SB

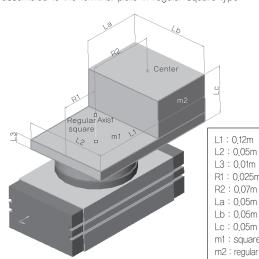
NF

NR

ASL

SAH

NBU


ACU

SE

ARM

Example (on the basis of NRT type)

In a case where a plate is attached to the revolving axis and assembled to the terminal plate in regular square type:

L2:0.05m

R1: 0.025m

R2: 0.07m

La:005m

Lb: 0.05m

Lc: 0.05m

m1 : square plate

m2 : regular square

3. Selecting Torque

Calculating inertia moment:

Weight of plate

 $m_1 = L2 \times (L1-R1) \times L3 \times 2.68 \times 10^3$

 $= 0.05 \times (0.12-0.025) \times 0.01 \times 2.68 \times 10^{3} = 0.127 \text{ (kgf)}$

 $m_2 = L2 \times R1 \times L3 \times 2.68 \times 10^3$

 $=0.05 \times 0.025 \times 0.01 \times 2.68 \times 10^3 = 0.034$ (kgf)

 $I_1 = 0.127/12\{4 \times (0.12 - 0.025)^2 + 0.05^2\} + 0.034/12\{4 \times 0.025^2 + 0.05^2\}$

 $= 0.42 \times 10^{-3} \text{ (kg. m²)} ----1$

Weight of regular square

 $m_3 = La \times Lb \times Lc \times 2.68 \times 10^3$

 $= 0.05 \times 0.05 \times 0.05 \times 2.68 \times 10^{3} = 0.335$ (kgf)

 $l_2 = (0.335 \times 0.05^2)/12 + (0.335 \times 0.07^2)$

 $= 1.71 \times 10^{-3} \text{ (kg. m}^2\text{)} ------$

Get the actual inertia moment I.

 $| = |_1 + |_2$

 $= 0.42 \times 10^{-3} + 1.71 \times 10^{-3}$

 $= 2.13 \times 10^{-3} \text{ (kg. m}^2)$

According to the condition, θ =90°, t=0.5 second Thus, each acceleration wa is calculated by the following expression.

$$\omega_A = (2 \times 1.57) / 0.5^2 = 12.56 \text{ (rad/s}^2) -----4$$

Substituting expression 3.4 limit coefficient: over 5 times is applied to accelerating torque.

Accelerating torque TA = $I \times \omega_A \times K = 5.43 \times 10^{-3} \times 12.56$ $(rad/s^2) \times 5 = 0.134 (N.m) - - 5$

Referring to the table of theoretic torque

If torque of 0.134 N.m (1.37 Kgf.cm) is necessary when applied pressure is 0.5 MPa (5 Kg/cm²), the supplying pressure is extended to horizontal axis and torque, to vertical axis respectively to get the intersection. Inner diameter larger than this intersection is to be selected.

1. Applying Condition

1 revolving angle: 90° 2 rotation time: 0,5 second

3 applied pressure: 0.5 (Mpa)

4 shape: Refer to the above figure.

Quality of the material of plate: aluminum alloy

(specific gravity=2.68 × 103 Kg/ m³)

Quality of the material of regular square: steel for structure (specific gravity=7.85 × 103 Kg/ m³)

(5) attaching direction: horizontal

2. Checking Rotation Time

Rotation time is 0.5 second,(on the basis of 90°) Thus, as rotation time is between 0,2~1,0 second, it can be used without problem.

* Rotary cylinder: For NRT30, theoretic torque is T=31,3 Kgf,cm

Effective torque: to be calculated within 70 % of the theoretic torque. T = 21.9 Kgf.cm

4. Inspecting kinetic energy

When a urethane stopper is installed According to the condition, θ =90°, t = 0.5 second $\omega = (2 \times 1.57) / 0.5 = 6.28 \text{ (rad/s)} - -$ From the expression ①, kinetic energy E is

 $E = 1/2 \times 2.13 \times 10 - 3 \times 6.282 = 0.042 (J) - -$ 0.042 < 0.048 (0.49 Kgf,cm)it can be used with no problem in

In case that allowed energy is exceeded, use buffer such as shock absorber, etc.

When shock absorber is installed

From expressions 3, 4

$$m = 10.87 + 14.86 = 25.73 \text{ (Kg)}$$

$$v = 0.014 \times 6.28 = 0.088$$
 — — — ⑥

From expressions (5), (6) If the expression of kinetic energy is substituted from the expressions (5),(6) $E = (25.73 \times 0.0882)/2$ = 0.0996 (J)

As 0.0996 < 0.106 (1.041 Kgf.cm), it can be used with no problem in installing shock absorber.

5. Inspecting load rate

Thrust load

Total weight: 0.127 + 0.034 + 0.335 = 0.496 (KG) Thus, WT = $0.496 \times 9.8 = 4.86$ (N) ---

Radial load

As there is no applied load WR = 0 (N) ————(2)

Moment

The movement of plate is,

$$M1 = (0.127 + 0.034) \times 9.8 \times \{ (0.12/2) - 0.025 \} = 0.055 (N,m) - 3$$

The movement of regular square is

 $M2 = 0.335 \times 9.8 \times 0.07 = 0.23 (N.m) - 4$

From the expressions 3, 4 the total moment value is,

$$M = 0.055 + 0.23 = 0.285 (N,m)$$

From expressions ①, ②, and ⑤ the value of total load rate

(WT / WT MAX)+(WS / WS MAX)+(M / M MAX)=4,86/363+ 0/197 + 0.285/5.3 = 0.0672 < 1.0

If the total of load rate does not exceed 1, it can be used.

6. Selection

NRT 30 can be used, because it is within the requirement of kinetic energy and load rate.

Air consumption of rotary cylinder

Model		Cylinder diameter	PCD	Cylinder	Internal	Pressure · Kgf/arr(psi)									
		· cm(in)	· cm(in)	stroke · cm(in)	volume	1	2	3	4	5	6	7	8	9	10
NRC series (double rack)	NRC12-90°	1(0,39)	1.05(0.41)	0.82(0.32)	0.65	0.01(0.14)	0.03(0.42)	0.04(0.57)	0.05(0.71)	0.07(0.99)	0.08(1.13)	0.09(1.28)	-	-	-
	NRC12-180°	1(0,39)	1.05(0.41)	1,65(0,65)	1,29	0.03(0.42)	0.05(0.71)	0.08(1.13)	0.10(1.42)	0.13(1.85)	0.16(2.27)	0,18(2,56)	-	-	-
	NRC15-90°	1,3(0,51)	1,65(0,65)	1,30(0,51)	1,72	0.04(0.57)	0.07(0.99)	0,11(1,56)	0.14(1.99)	0.17(2.41)	0,21(2,98)	0.24(3.41)	-	-	-
	NRC15-180°	1,3(0,51)	1,65(0,65)	2,59(1,02)	3,44	0.07(0.99)	0.14(1.89)	0,21(2,98)	0,28(3,98)	0.35(4.98)	0.41(5.83)	0.48(6.82)	-	-	-
	NRC20-90°	1.8(0.71)	1,55(0,61)	1,22(0,48)	3.09	0.07(0.99)	0,13(1,99)	0.19(2.70)	0,25(3,55)	0.31(4.41)	0,37(5,26)	0.43(6.11)	-	-	-
	NRC20-180°	1.8(0.71)	1.55(0.61)	2.43(0.95)	6.19	0.13(1.85)	0.26(1.85)	0.38(5.40)	0.50(7.11)	0.62(8.81)	0.75(10.66)	0.87(12,37)	-	-	-
	NRC30-90°	2(0.79)	1.75(0.69)	1,37(0,54)	4.31	0.09(1.28)	0.18(3.70)	0.26(3.70)	0.35(4.98)	0.43(6.11)	0.52(7.39)	0.60(8.53)	-	-	-
	NRC30-180°	2(0.79)	1.75(0.69)	2,75(1,08)	8,63	0.19(2.70)	0,36(2,56)	0.53(7.54)	0.70(9.95)	0.87(12.37)	1.04(14.79)	1,21(17,21)	-	-	-
-	NRP50-90°	5(1,97)	2,1(0,82)	1,65(0,65)	32,35	0.70(1.95)	1.34(5.12)		2,62(37,26)	3,26(51,5)	3,90(55,4)	4.54(64.5)		5,81(82,6)	6.45(91.7)
	NRP50-100°	5(1,97)	2,1(0,82)	1,83(0,72)	35,95	0.78(11.09)		2.20(31.3)	2.91(141.4)	3,62(92,7)	4.33(61.6)	5.04(71.7)		6.46(91.9)	7.17(102)
	NRP50-180°	5(1,97)	2,1(0,82)	3,30(1,30)	64,70	1.4(20.0)	2,68(21,19)	3,96(56,3)	5.24(74.5)	6,52(92,7)	7.79(110)	9.07(129)	10,35(147)	11,63(165)	12,90(183)
	NRP50-190°	5(1,97)	2,1(0,82)	3,48(1,37)	68,30	1,49(21,2)	2,83(40,2)	4.18(59.4)	5,53(78,6)	6.88(97.8)	8.23(117)	9,58(136)	10,92(155)	12,27(174)	13,62(193)
	NRP63-90°	6.3(2.48)	2.4(0.94)	1,88(0,74)	58,70	1,28(18,2)	2,44(34.7)	3,59(51,0)	4.75(67.5)	5.91(84.0)	7.07(100)	8,23(117)	9,39(133)	10,55(150)	11,71(166)
	NRP63-100°	6,3(2,48)	2.4(0.94)	2,09(0,82)	65,22	1,42(20,2)	2,71(38,5)	3,99(56,7)	5,28(75,1)	6.57(93.4)	7.86(111)	9.14(130)	10.43(148)	11,72(166)	13,01(185)
	NRP63-180°	6,3(2,48)	2.4(0.94)	3,77(1,48)	117.40	2,55(30,2)	4,87(69,2)	7,19(102)	9,51(135)	11.82(168)	14.14(201)	16.46(234)		21,10(300)	23,41(333)
NRP series	NRP63-190°	6,3(2,48)	2.4(0.94)	3,98(1,56)	123,92	2,69(38,2)	5.14(77.5)	7.59(108)	10.03(142)	12,48(177)	14.93(212)	17.37(247)		22,27(316)	24,71(351)
(single rack)	NRP80-90°	8(3,15)	3(1,18)	2,36(0,93)	118,32	2,57(36,2)	4.91(69.8)	7.24(103)	9,58(136)	11,92(169)	14,25(202)	16,59(236)		21,26(302)	23,60(335)
	NRP80-100°	8(3,15)	3(1,18)	2,62(1,03)	131,46	2,86(40,6)	5.45(73.1)	8.05(114)	10,64(151)	13,24(188)	15,84(225)		21,03(299)	23,62(336)	26,22(373)
	NRP80-180°	8(3,15)	3(1,18)	4,71(1,85)	236,63	5,15(73,2)	9,82(69,8)	14.49(206)	19.16(272)	23,83(339)			37,85(538)	42,52(604)	47.19(671)
	NRP80-190°	8(3,15)	3(1,18)	4.97(1.95)	249.78	5.43(77.2)	10,36(77,5)	15,29(217)	20,23(287)	25,16(358)	30.09(428)		39,95(568)	44.88(638)	49,81(708)
	NRP100-90°	10(3,94)	3,9(1,53)	3,06(1,20)	240.33	5.23(74.3)	9,97(139)	14.72(209)	19,46(276)	24.21(344)	28,95(411)		38.44(564)		47,93(681)
	NRP100-100°	10(3,94)	3,9(1,53)	3,40(1,34)	267.03	5,81(82,6)	11.08(147)	16,35(232)		26,89(382)	32,17(457)	37.44(532)		47.98(682)	53,25(757)
	NRP100-180°	10(3,94)	3,9(1,53)	6,12(2,41)	480,66	10.45(148)	19.94(142)	29.43(418)	38,92(553)	48.41(688)	57,90(823)				95,86(1363)
	NRP100-190°	10(3,94)	3,9(1,53)	6.46(2.54)	507.36	11,03(156)	21,05(157)		41,08(584)	51.10(727)	61,12(869)		81,15(1154)		101.18(1439)
NRT series (double rack)	NRT30-190°	2,2(0,86)	1,65(0,65)	2,73(1,07)	20.78	0.90(12.8)	1.72(24.4)	2,54(36,1)	3,36(47,8)	4.19(59.6)	5.01(71.2)		6,65(94,6)	7.47(106)	8,29(118)
	NRT50-190°	2,5(0,98)	2,1(0,82)	3,48(1,37)	34,15	1,49(21,2)	2,83(40,2)	4.18(59.4)	5,53(78,6)	6.88(97.8)	8,23(117)	9,58(136)	10.92(155)	12,27(174)	13,62(193)
	NRT70-190°	2.8(1.10)	2,45(0,96)	4.06(1.60)	49.98	2.17(30.8)	4,15(59)	6,12(87)	8.09(115)	10.07(143)	12.04(171)	14.01(199)		17.96(259)	19,93(283)
	NRT100-190°	3,2(1,26)	2,55(1,0)	4,23(1,66)	67.94	2.95(41.9)	5,64(80,2)	8,32(118)	11,00(156)	13,69(194)	16,37(233)	19.05(271)	21,73(309)	24.42(347)	27.10(385)

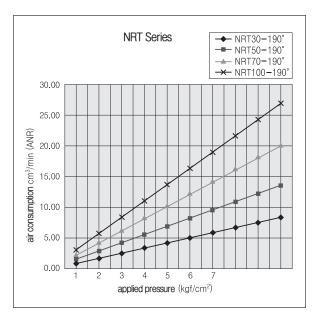
578

SB

NF

NR

ASL


Calculation of air fluid quantity and air consumption

Air consumption (Q) for one cycle of each rotary cylinder is indicated in table 1-6, which will be helpful for your calculation. The air fluid quantity and air consumption is calculated by the following expression.

■ To get air fluid quantity (in the case of F.R.L., etc. are selected) Q1=(3.14D^2/4)*L*60/t*(P+1.013)/1.013*10^-3 or $Q1=q*60/t*(P+1.013)/1.013*10^{-3}$

To get air consumption

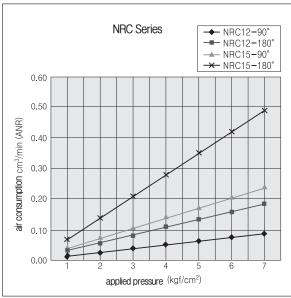
Q2=(3,14D^2/4)*L*2*n*(P+1,013)/1,013*10^-3 or Q2=q*2*n*(P+1.013)/1.013*10^-3

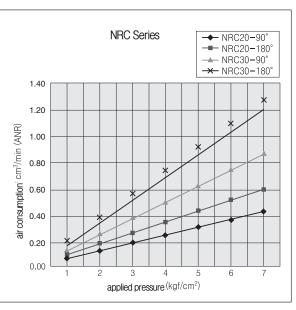
Q1: air fluid quantity l/min (ANR) Q2: air fluid consumption (ANR)

한국원색인쇄사 😊 🔀 📉

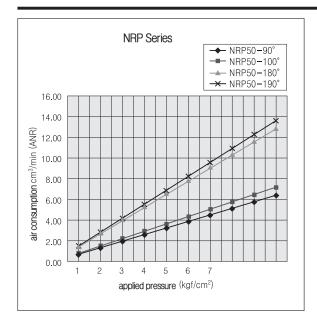
D : inner diameter of cylinder tube cm : cylinder stroke cm

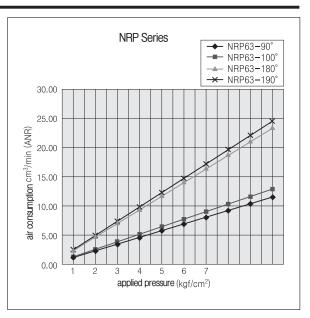
: inner volume of cylinder (one cylinder only): q

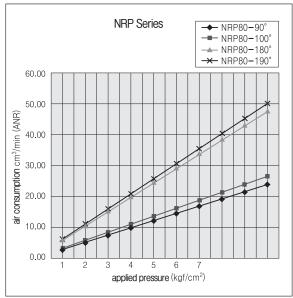

CM3

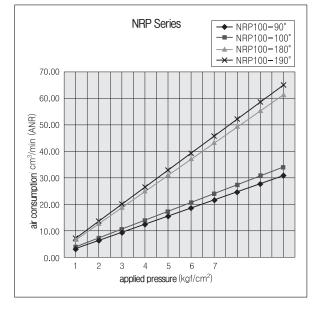

:time required for one going and returning of cylinder S

: number of shaking per minute times/min

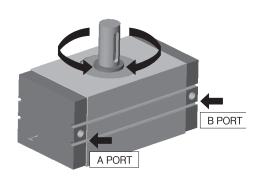

P: applied pressure

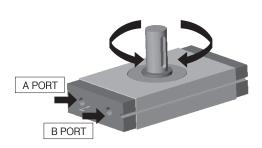




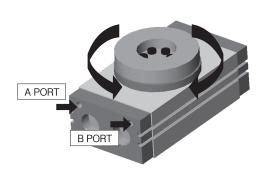


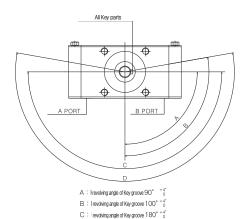
한국원색인쇄사 C M 🗡 🔣



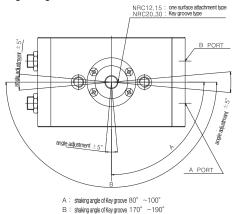

한국원색인쇄사 😊 🔀 📉

Rotating direction and angle range

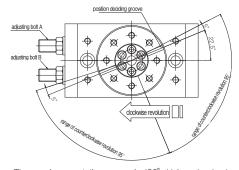

1.1 Rotating direction of NRP series: If pressed at A port, the axis revolves clockwise and if pressed at B port, counterclockwise.


1.3 Rotating direction of NRC series: If pressed at A port, the axis revolves clockwise and if pressed at B port, counterclockwise.

1.5 Rotating direction of NRT series: If pressed at A port, the axis revolves clockwise and if pressed at B port, counterclockwise.



1.2 Angle range of NRP series


D: levoling angle of Key groups 190° +% $** 90^{\circ}, 180^{\circ} : standard specification, 100^{\circ}, 190^{\circ} : substandard specification,$

1.4 Angle range of NRC series

 \times The range of angle adjustment is $\pm 5^{\circ}$.

1.6 Angle range of NRT series

SB

NF

NID

NR

ASL

LOW SPEED

CHANGE OF ROD END SHAPE

TPC-1000 TPC-1200

SAH

NBU

ACU

SE

ARM

581